CODE FESTIVAL 2016 Final

Submission #992256

Source codeソースコード

#include <vector>
#include <iostream>
#include <utility>
#include <algorithm>
#include <string>
#include <deque>
#include <tuple>
#include <queue>
#include <functional>
#include <cmath>
#include <iomanip>
#include <map>
#include <numeric>
#include <unordered_map>
#include <unordered_set>
#include <complex>
#include <iterator>
#include <array>
#include <chrono>
//cin.sync_with_stdio(false);
//streambuf
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
using vi = vector<int>;
using vll = vector<ll>;
using vpii = vector<pii>;
template<class T, int s>using va = vector<array<T, s>>;
template<class T, class T2> using umap = unordered_map<T, T2>;
template<class T> using uset = unordered_set<T>;
template<class T, class S> void cmin(T &a, const S&&b) { if (a > b)a = b; }
template<class T, class S> void cmax(T &a, const S&&b) { if (a < b)a = b; }
#define ALL(a) a.begin(),a.end()
#define rep(i,a) for(int i=0;i<a;i++)
#define rep1(i,a) for(int i=1;i<=a;i++)
#define rrep(i,a) for(int i=a-1;i>=0;i--)
#define rrep1(i,a) for(int i=a;i;i--)
const ll mod = 1000000007;
#ifndef INT_MAX
const int INT_MAX = numeric_limits<signed>().max();
#endif
template<class T>using heap = priority_queue<T, vector<T>, greater<T>>;
template<class T>using pque = priority_queue<T, vector<T>, function<T(T, T)>>;
template <class T>
inline void hash_combine(size_t & seed, const T & v) {
	hash<T> hasher;
	seed ^= hasher(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
namespace std {

	template<typename S, typename T> struct hash<pair<S, T>> {
		inline size_t operator()(const pair<S, T> & v) const {
			size_t seed = 0;
			hash_combine(seed, v.first);
			hash_combine(seed, v.second);
			return seed;
		}
	};
	// Recursive template code derived from Matthieu M.
	template <class Tuple, size_t Index = std::tuple_size<Tuple>::value - 1>
	struct HashValueImpl
	{
		static void apply(size_t& seed, Tuple const& tuple)
		{
			HashValueImpl<Tuple, Index - 1>::apply(seed, tuple);
			hash_combine(seed, std::get<Index>(tuple));
		}
	};

	template <class Tuple>
	struct HashValueImpl<Tuple, 0>
	{
		static void apply(size_t& seed, Tuple const& tuple)
		{
			hash_combine(seed, std::get<0>(tuple));
		}
	};

	template <typename ... TT>
	struct hash<std::tuple<TT...>>
	{
		size_t
			operator()(std::tuple<TT...> const& tt) const
		{
			size_t seed = 0;
			HashValueImpl<std::tuple<TT...> >::apply(seed, tt);
			return seed;
		}

	};
}
ll pow(ll base, ll i, ll mod) {
	ll a = 1;
	while (i) {
		if (i & 1) {
			a *= base;
			a %= mod;
		}
		base *= base;
		base %= mod;
		i /= 2;
	}
	return a;
}
class unionfind {
	vector<int> par, rank, size_;//速度ではなくメモリ効率を考えるならrankのかわりにsizeを使う
public:
	unionfind(int n) :par(n), rank(n), size_(n, 1) {
		iota(ALL(par), 0);
	}
	int find(int x) {
		if (par[x] == x)return x;
		return par[x] = find(par[x]);
	}
	void unite(int x, int y) {
		x = find(x), y = find(y);
		if (x == y)return;
		if (rank[x] < rank[y])swap(x, y);
		par[y] = x;
		size_[x] += size_[y];
		if (rank[x] == rank[y])rank[x]++;
	}
	bool same(int x, int y) {
		return find(x) == find(y);
	}
	int size(int x) {
		return size_[find(x)];
	}
};
ll gcd(ll a, ll b) {
	while (b) {
		ll c = a%b;
		a = b;
		b = c;
	}
	return a;
}
ll lcm(ll a, ll b) {
	return a / gcd(a, b)*b;
}
int popcnt(unsigned long long a) {
	a = (a & 0x5555555555555555) + (a >> 1 & 0x5555555555555555);
	a = (a & 0x3333333333333333) + (a >> 2 & 0x3333333333333333);
	a = (a & 0x0f0f0f0f0f0f0f0f) + (a >> 4 & 0x0f0f0f0f0f0f0f0f);
	a = (a & 0x00ff00ff00ff00ff) + (a >> 8 & 0x00ff00ff00ff00ff);
	a = (a & 0x0000ffff0000ffff) + (a >> 16 & 0x0000ffff0000ffff);
	return (a & 0xffffffff) + (a >> 32);
}
template<class T, class Func = function<T(T, T)>>
class segtree {
	vector<T> obj;
	int offset;
	Func updater;
	T e;
	int bufsize(int num) {
		int i = 1;
		for (; num >i; i <<= 1);
		offset = i - 1;
		return (i << 1) - 1;
	}
	T query(int a, int b, int k, int l, int r) {
		if (r <= a || b <= l)return e;
		if (a <= l && r <= b)return obj[k];
		else return updater(query(a, b, k * 2 + 1, l, (l + r) / 2), query(a, b, k * 2 + 2, (l + r) / 2, r));
	}
public:
	T query(int a, int b) {//[a,b)
		return query(a, b, 0, 0, offset + 1);
	}
	void updateall(int l = 0, int r = -1) {
		if (r < 0)r = offset + 1;
		l += offset, r += offset;
		do {
			l = l - 1 >> 1, r = r - 1 >> 1;
			for (int i = l; i < r; i++)obj[i] = updater(obj[i * 2 + 1], obj[i * 2 + 2]);
		} while (l);
	}
	void update(int k, T &a) {
		k += offset;
		obj[k] = a;
		while (k) {
			k = k - 1 >> 1;
			obj[k] = updater(obj[k * 2 + 1], obj[k * 2 + 2]);
		}
	}
	segtree(int n, T e, const Func &updater_ = Func()) :obj(bufsize(n), e), e(e), updater(updater_) {}
	segtree(vector<T> &vec, T e, const Func &updater = Func()) :obj(bufsize(vec.size()), e), e(e), updater(updater) {
		copy(vec.begin(), vec.end(), obj.begin() + offset);
		updateall();
	}
	typename vector<T>::reference operator[](int n) {
		return obj[n + offset];
	}
};
template<class T>
class matrix {
	vector<vector<T>> obj;
	pair<int, int> s;
public:
	matrix(pair<int, int> size, T e = 0) :matrix(size.first, size.second, e) {}
	matrix(int n, int m = -1, T e = 0) :obj(n, vector<T>(m == -1 ? n : m, e)), s(n, m == -1 ? n : m) {}
	static matrix e(int n) {
		matrix a = (n);
		for (int i = 0; i < n; i++)a[i][i] = 1;
		return a;
	}
	matrix& operator+=(const matrix &p) {
		if (s != p.s)throw runtime_error("matrix error");
		for (int i = 0; i < s.first; i++)
			for (int j = 0; j < s.second; j++)obj[i][j] += p.obj[i][j];
		return *this;
	}
	matrix operator+(const matrix &p) {
		matrix res(*this);
		return res += p;
	}
	matrix& operator-=(const matrix &p) {
		if (s != p.s)throw runtime_error("matrix error");
		for (int i = 0; i < s.first; i++)
			for (int j = 0; j < s.second; j++)obj[i][j] -= p.obj[i][j];
		return *this;
	}
	matrix operator-(const matrix &p) {
		matrix res(*this);
		return res -= p;
	}
	matrix& operator*=(T p) {
		for (auto &a : obj)
			for (auto &b : a)b *= p;
		return *this;
	}
	matrix operator*(T p) {
		matrix res(*this);
		return res *= p;
	}
	matrix operator*(const matrix &p) {
		if (s.second != p.s.first)throw runtime_error("matrix error");
		matrix ret(s.first, p.s.second);
		for (int i = 0; i < s.first; i++)
			for (int j = 0; j < s.second; j++)
				for (int k = 0; k < p.s.second; k++)ret[i][k] += obj[i][j] * p.obj[j][k];
		return ret;
	}
	matrix &operator*=(const matrix &p) {
		return *this = *this*p;
	}
	pair<int, int> size() const {
		return s;
	}
	matrix &mod(T m) {
		for (auto &a : obj)
			for (auto &b : a)b %= m;
		return *this;
	}
	typename vector<vector<T>>::reference operator[](int t) {
		return obj[t];
	}
};
template<class T> inline
matrix<T> pow(matrix<T> &base, unsigned exp) {
	auto base_(base);
	if (base_.size().first != base_.size().second)throw runtime_error("matrix error");
	matrix<T> res = matrix<T>::e(base_.size().first);
	for (;;) {
		if (exp & 1)res *= base_;
		if (!(exp /= 2))break;
		base_ *= base_;
	}
	return res;
}
template<class T> inline
matrix<T> modpow(matrix<T> &base, unsigned exp, T m) {
	auto base_(base);
	if (base.size().first != base_.size().second)throw runtime_error("matrix error");
	matrix<T> res = matrix<T>::e(base_.size().first);
	for (;;) {
		if (exp & 1)(res *= base_).mod(m);
		if (!(exp /= 2))break;
		(base_ *= base_).mod(m);
	}
	return res;
}
template<class T>int id(vector<T> &a, T b) {
	return lower_bound(ALL(a), b) - a.begin();
}
class Flow {
	int V;
	struct edge { int to, cap, rev, cost; };
	vector<vector<edge>> G;
	vector<int> level, iter, h, dist, prevv, preve;
	Flow(int size) :G(size + 1), V(size + 1) {
	}
	void add_edge(int from, int to, int cap, int cost = 0) {
		G[from].push_back(edge{ to, cap, (int)G[to].size(),cost });
		G[to].push_back(edge{ from,0,(int)G[from].size() - 1,-cost });
	}
	void bfs(int s) {
		fill(level.begin(), level.end(), -1);
		queue<int> que;
		level[s] = 0;
		que.push(s);
		while (!que.empty()) {
			int v = que.front(); que.pop();
			for (int i = 0; i < G[v].size(); i++) {
				edge &e = G[v][i];
				if (e.cap > 0 && level[e.to] < 0) {
					level[e.to] = level[v] + 1;
					que.push(e.to);
				}
			}
		}
	}
	int dfs(int v, int t, int f) {
		if (v == t)return f;
		for (int &i = iter[v]; i < G[v].size(); i++) {
			edge &e = G[v][i];
			if (e.cap > 0 && level[v] < level[e.to]) {
				int d = dfs(e.to, t, min(f, e.cap));
				if (d > 0) {
					e.cap -= d;
					G[e.to][e.rev].cap += d;
					return d;
				}
			}
		}
		return 0;
	}
	int max_flow(int s, int t) {
		level.resize(V);
		iter.resize(V);
		int flow = 0;
		for (;;) {
			bfs(s);
			if (level[t] < 0)return flow;
			fill(iter.begin(), iter.end(), 0);
			int f;
			while ((f = dfs(s, t, numeric_limits<int>::max()))>0) {
				flow += f;
			}
		}
	}
	typedef pair<int, int> P;
	int min_cost_flow(int s, int t, int f) {
		int res = 0;
		h.resize(V);
		dist.resize(V);
		prevv.resize(V);
		preve.resize(V);
		fill(h.begin(), h.end(), 0);
		while (f > 0) {
			priority_queue<P, vector<P>, greater<P>> que;
			fill(dist.begin(), dist.end(), numeric_limits<int>::max());
			dist[s] = 0;
			que.push({ 0,s });
			while (!que.empty()) {
				P p = que.top(); que.pop();
				int v = p.second;
				if (dist[v] < p.first)continue;
				for (int i = 0; i < G[v].size(); i++) {
					edge &e = G[v][i];
					if (e.cap > 0 && dist[e.to]>dist[v] + e.cost + h[v] - h[e.to]) {
						dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
						prevv[e.to] = v;
						preve[e.to] = i;
						que.push({ dist[e.to],e.to });
					}
				}
			}
			if (dist[t] == numeric_limits<int>::max()) {
				return -1;
			}
			for (int v = 0; v < V; v++)h[v] += dist[v];

			int d = f;
			for (int v = t; v != s; v = prevv[v]) {
				d = min(d, G[prevv[v]][preve[v]].cap);
			}
			f -= d;
			res += d*h[t];
			for (int v = t; v != s; v = prevv[v]) {
				edge &e = G[prevv[v]][preve[v]];
				e.cap -= d;
				G[v][e.rev].cap += d;
			}
		}
		return res;
	}
};
const ld eps = 1e-11, pi = acos(-1.0);
typedef complex<ld> P;
typedef vector<P> VP;
ld dot(P a, P b) { return real(conj(a) * b); }
ld cross(P a, P b) { return imag(conj(a) * b); }

namespace std {
	bool operator<(const P &a, const P &b) {
		return abs(a.real() - b.real()) < eps ? a.imag() < b.imag() : a.real() < b.real();
	}
}

struct L { P a, b; };//line->l,segment->s
struct C { P p; ld r; };

int ccw(P a, P b, P c) {
	b -= a; c -= a;
	if (cross(b, c) > eps) return 1;   // counter clockwise
	if (cross(b, c) < -eps) return -1; // clockwise
	if (dot(b, c) < 0) return 2;       // c--a--b on line
	if (norm(b) < norm(c)) return -2;  // a--b--c on line
	return 0;                          // a--c--b on line
}

bool isis_ll(L l, L m) {//is intersect
	return abs(cross(l.b - l.a, m.b - m.a)) > eps;
}

bool isis_ls(L l, L s) {
	ld a = cross(l.b - l.a, s.a - l.a);
	ld b = cross(l.b - l.a, s.b - l.a);
	return (a * b < eps);
}

bool isis_lp(L l, P p) {
	return abs(cross(l.b - p, l.a - p)) < eps;
}

bool isis_ss(L s, L t) {
	return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&
		ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}

P is_ll(L s, L t) { //intersect
	P sv = s.b - s.a, tv = t.b - t.a;
	return s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);
}

bool isis_sp(L s, P p) {
	return abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps;
}

P proj(L l, P p) {
	ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
	return l.a + t * (l.a - l.b);
}

ld dist_lp(L l, P p) {
	return abs(p - proj(l, p));
}

ld dist_ll(L l, L m) {
	return isis_ll(l, m) ? 0 : dist_lp(l, m.a);
}

ld dist_ls(L l, L s) {
	if (isis_ls(l, s)) return 0;
	return min(dist_lp(l, s.a), dist_lp(l, s.b));
}

ld dist_sp(L s, P p) {
	P r = proj(s, p);
	if (isis_sp(s, r)) return abs(r - p);
	return min(abs(s.a - p), abs(s.b - p));
}

ld dist_ss(L s, L t) {
	if (isis_ss(s, t)) return 0;
	ld a = min(dist_sp(s, t.a), dist_sp(t, s.a));
	ld b = min(dist_sp(s, t.b), dist_sp(t, s.b));
	return min(a, b);
}

VP is_cc(C c1, C c2) {
	VP res;
	ld d = abs(c1.p - c2.p);
	ld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);
	ld dfr = c1.r * c1.r - rc * rc;
	if (abs(dfr) < eps) dfr = 0.0;
	else if (dfr < 0.0) return res; // no intersection
	ld rs = sqrt(dfr);
	P diff = (c2.p - c1.p) / d;
	res.push_back(c1.p + diff * P(rc, rs));
	if (dfr != 0.0) res.push_back(c1.p + diff * P(rc, -rs));
	return res;
}

bool isis_vc(vector<C> vc) {
	VP crs;
	int n = vc.size();
	rep(i, n)rep(j, i)
		for (P p : is_cc(vc[i], vc[j]))
			crs.push_back(p);
	rep(i, n)
		crs.push_back(vc[i].p);
	for (P p : crs) {
		bool valid = true;
		rep(i, n)
			if (abs(p - vc[i].p)>vc[i].r + eps)
				valid = false;
		if (valid) return true;
	}
	return false;
}

VP is_lc(C c, L l) {
	VP res;
	ld d = dist_lp(l, c.p);
	if (d < c.r + eps) {
		ld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;
		P nor = (l.a - l.b) / abs(l.a - l.b);
		res.push_back(proj(l, c.p) + len * nor);
		res.push_back(proj(l, c.p) - len * nor);
	}
	return res;
}

VP is_sc(C c, L l) {
	VP v = is_lc(c, l), res;
	for (P p : v)
		if (isis_sp(l, p)) res.push_back(p);
	return res;
}

vector<L> tangent_cp(C c, P p) {//円の接線?
	vector<L> ret;
	P v = c.p - p;
	ld d = abs(v);
	ld l = sqrt(norm(v) - c.r * c.r);
	if (isnan(l)) { return ret; }
	P v1 = v * P(l / d, c.r / d);
	P v2 = v * P(l / d, -c.r / d);
	ret.push_back(L{ p, p + v1 });
	if (l < eps) return ret;
	ret.push_back(L{ p, p + v2 });
	return ret;
}

vector<L> tangent_cc(C c1, C c2) {
	vector<L> ret;
	if (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {
		P center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);
		ret = tangent_cp(c1, center);
	}
	if (abs(c1.r - c2.r) > eps) {
		P out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);
		vector<L> nret = tangent_cp(c1, out);
		ret.insert(ret.end(), ALL(nret));
	}
	else {
		P v = c2.p - c1.p;
		v /= abs(v);
		P q1 = c1.p + v * P(0, 1) * c1.r;
		P q2 = c1.p + v * P(0, -1) * c1.r;
		ret.push_back(L{ q1, q1 + v });
		ret.push_back(L{ q2, q2 + v });
	}
	return ret;
}

ld area(const VP &p) {//面積??
	ld res = 0;
	int n = p.size();
	rep(j, n) res += cross(p[j], p[(j + 1) % n]);
	return res / 2;
}

bool is_polygon(L l, VP &g) {
	int n = g.size();
	for (int i = 0; i < n; i++) {
		P a = g[i];
		P b = g[(i + 1) % n];
		if (isis_ss(l, L{ a, b })) return true;
	}
	return false;
}

int is_in_Polygon(const VP &g, P p) {
	bool in = false;
	int n = g.size();
	for (int i = 0; i < n; i++) {
		P a = g[i] - p, b = g[(i + 1) % n] - p;
		if (imag(a) > imag(b)) swap(a, b);
		if (imag(a) <= 0 && 0 < imag(b))
			if (cross(a, b) < 0) in = !in;
		if (abs(cross(a, b)) < eps && dot(a, b) < eps) return 0; // on
	}
	if (in) return 1; // in
	return -1; // out
}

VP ConvexHull(VP ps) {
	int n = ps.size();
	int k = 0;
	sort(ps.begin(), ps.end());
	VP ch(2 * n);
	for (int i = 0; i < n; ch[k++] = ps[i++])
		while (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;
	for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])
		while (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;
	ch.resize(k - 1);
	return ch;
}

VP ConvexCut(const VP &ps, L l) {
	VP Q;
	for (int i = 0; i < (int)ps.size(); i++) {
		P A = ps[i], B = ps[(i + 1) % ps.size()];
		if (ccw(l.a, l.b, A) != -1) Q.push_back(A);
		if (ccw(l.a, l.b, A) * ccw(l.a, l.b, B) < 0)
			Q.push_back(is_ll(L{ A, B }, l));
	}
	return Q;
}
double dist2(P a) {
	return real(a)*real(a) + imag(a)*imag(a);
}
// Suffix Array	初期化O(|S|log^2|S|), 検索O(|T|log|S|), 高さ配列構築O(|S|)
class StringSearch {
	const int n;
	string S;
public:
	vector<int> sa, rank;
	StringSearch(const string &S_) :n(S_.size()), S(S_), sa(n + 1), rank(n + 1) {
		for (int i = 0; i <= n; i++) {
			sa[i] = i;
			rank[i] = i < n ? S[i] : -1;
		}
		vector<int> tmp(n + 1);
		for (int k = 1; k <= n; k *= 2) {
			auto Compare_SA = [=](int i, int j) {
				if (this->rank[i] != this->rank[j]) return this->rank[i] < this->rank[j];

				int ri = i + k <= n ? this->rank[i + k] : -1;
				int rj = j + k <= n ? this->rank[j + k] : -1;
				return ri < rj;
			};
			sort(sa.begin(), sa.end(), Compare_SA);
			tmp[sa[0]] = 0;
			for (int i = 1; i <= n; i++) {
				tmp[sa[i]] = tmp[sa[i - 1]] + (Compare_SA(sa[i - 1], sa[i]) ? 1 : 0);
			}
			for (int i = 0; i <= n; i++) {
				this->rank[i] = tmp[i];
			}
		}
	}
	bool Contain(const string &T) {
		int a = 0, b = n;
		while (b - a > 1) {
			int c = (a + b) / 2;
			if (S.compare(sa[c], T.length(), T) < 0) a = c;
			else b = c;
		}
		return S.compare(sa[b], T.length(), T) == 0;
	}
	vector<int> LCPArray() {
		for (int i = 0; i <= n; i++) rank[sa[i]] = i;
		int h = 0;
		vector<int> lcp(n + 1);
		for (int i = 0; i < n; i++) {
			int j = sa[rank[i] - 1];
			if (h > 0) h--;
			for (; j + h < n && i + h < n; h++) {
				if (S[j + h] != S[i + h]) break;
			}
			lcp[rank[i] - 1] = h;
		}
		return lcp;
	}
};
int main() {
	int n, m;
	cin >> n >> m;
	unionfind uf(m+1);
	vi ex(m + 1);
	rep(i, n) {
		int k;
		cin >> k;
		int prev = 0;
		rep(j, k) {
			int l;
			cin >> l;
			if (prev)uf.unite(l, prev);
			ex[l] = 1;
			prev = l;
		}
	}
	rep1(i, m) {
		if (ex[i]&&!uf.same(1, i)) {
			cout << "NO" << endl;
			return 0;
		}
	}
	cout << "YES" << endl;
}

Submission

Task問題 C - Interpretation
User nameユーザ名 nakano
Created time投稿日時
Language言語 C++14 (GCC 5.4.1)
Status状態 WA
Score得点 0
Source lengthソースコード長 17860 Byte
File nameファイル名
Exec time実行時間 ms
Memory usageメモリ使用量 -

Test case

Set

Set name Score得点 / Max score Cases
sample - sample-01.txt,sample-02.txt
dataset1 0 / 200 sample-01.txt,sample-02.txt,01-01.txt,01-02.txt,01-03.txt,01-04.txt,01-05.txt,01-06.txt,01-07.txt,01-08.txt,01-09.txt,01-10.txt
dataset2 0 / 200 sample-01.txt,sample-02.txt,01-01.txt,01-02.txt,01-03.txt,01-04.txt,01-05.txt,01-06.txt,01-07.txt,01-08.txt,01-09.txt,01-10.txt,02-01.txt,02-02.txt,02-03.txt,02-04.txt,02-05.txt,02-06.txt,02-07.txt,02-08.txt,02-09.txt,02-10.txt,02-11.txt,02-12.txt,02-13.txt

Test case

Case name Status状態 Exec time実行時間 Memory usageメモリ使用量
01-01.txt AC 3 ms 256 KB
01-02.txt AC 3 ms 256 KB
01-03.txt AC 3 ms 256 KB
01-04.txt AC 3 ms 256 KB
01-05.txt AC 3 ms 256 KB
01-06.txt WA
01-07.txt WA
01-08.txt AC 3 ms 256 KB
01-09.txt AC 3 ms 256 KB
01-10.txt WA
02-01.txt WA
02-02.txt AC 38 ms 256 KB
02-03.txt AC 34 ms 1024 KB
02-04.txt AC 43 ms 1792 KB
02-05.txt AC 39 ms 384 KB
02-06.txt AC 42 ms 1792 KB
02-07.txt AC 40 ms 384 KB
02-08.txt AC 32 ms 256 KB
02-09.txt WA
02-10.txt AC 38 ms 1024 KB
02-11.txt AC 38 ms 1024 KB
02-12.txt AC 38 ms 1024 KB
02-13.txt AC 38 ms 1024 KB
sample-01.txt AC 3 ms 256 KB
sample-02.txt AC 2 ms 256 KB